INTEGRATED CIRCUITS

DATA SHEET

TDA8586

Power amplifier with load detection and auto BTL/SE selection

Preliminary specification Supersedes data of 1999 Apr 08 File under Integrated Circuits, IC01 2001 Jul 23

TDA8586

FEATURES

General

- Operating voltage from 8 to 18 V
- · Low distortion
- · Few external components, fixed gain
- Automatic mode selection (SE or BTL) depending on connected rear loads
- Can be used as a stereo amplifier in Bridge-Tied Load (BTL) or quad Single-Ended (SE) amplifiers
- Single-ended mode without loudspeaker capacitor
- Soft clipping, to guarantee good clip behaviour with inductive loads
- Mute and standby mode with one-pin operation
- Diagnostic information for Dynamic Distortion Detector (DDD), high temperature (140 °C) operation mode and short-circuit
- No switch-on/off plops when switching between standby and mute and from mute to on
- Load detection on rear channels when switching from standby to mute
- Fast mute on supply voltage drops (low V_P mute).

Protection

- Short-circuit proof to ground, positive supply voltage on all pins and across load
- · ESD protected on all pins
- Thermal protection against temperatures exceeding 150 °C
- Load dump protection
- · Overvoltage protection.

GENERAL DESCRIPTION

The device incorporates the following functions:

- 4 × 6 W SE amplifies without SE capacitor, because of the availability of 2 half supply voltage power buffers
- 2 × 20 W BTL amplifiers
- Automatic switching between 2 and 4 speaker operation. The mode of operation is determined during start-up.

This amplifier is protected for all general short-circuit conditions to battery or ground, overvoltage, 45 V load dump and short-circuits on the speaker outputs.

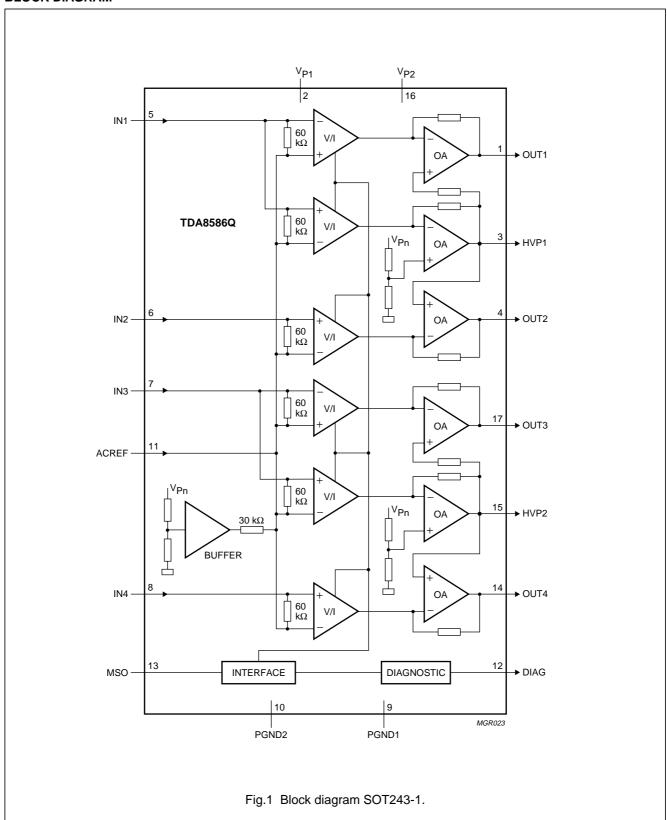
The device is contained in a 20-pin power HSOP package, but is also available in a 17-pin SIL power package. When packaged in the 20-pin HSOP package additional functions are available:

- DDD level selection between 2 and 10%
- Overrule pin for changing mode of operation (from SE to BTL or from BTL to SE).

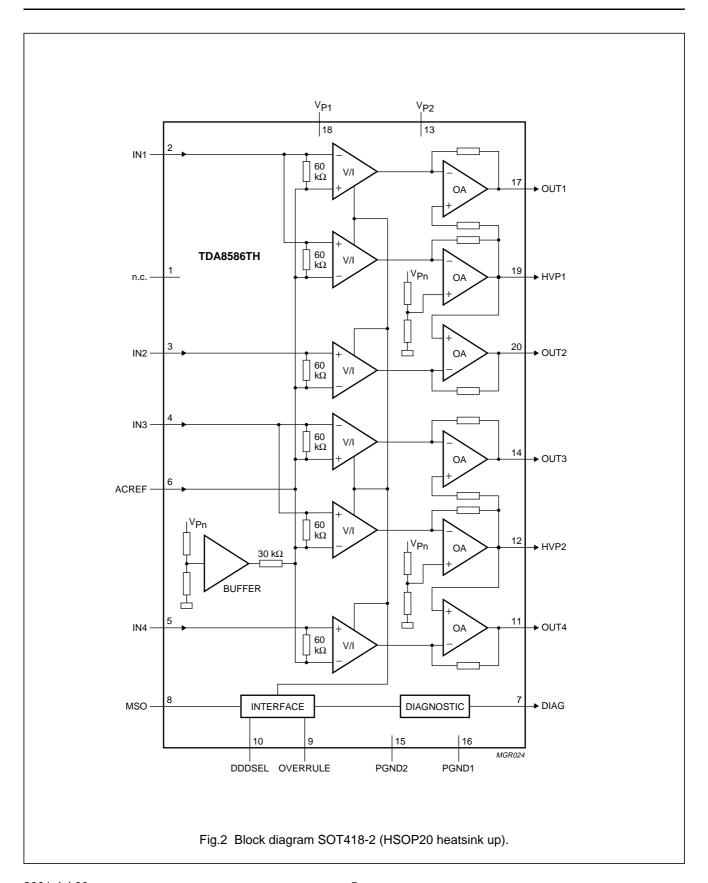
ORDERING INFORMATION

TYPE		PACKAGE								
NUMBER	NAME	DESCRIPTION	VERSION							
TDA8586Q	DBS17P	plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)	SOT243-1							
TDA8586TH	HSOP20	heatsink small outline package; 20 leads; low stand-off	SOT418-2							

Power amplifier with load detection and auto BTL/SE selection


TDA8586

QUICK REFERENCE DATA

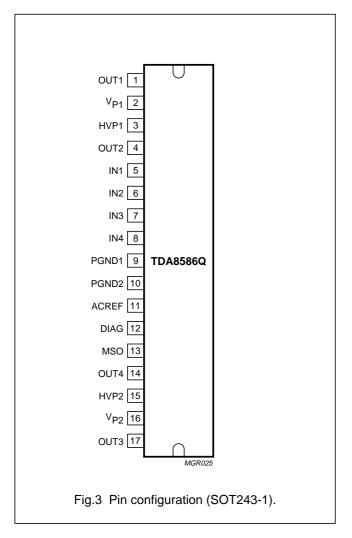

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	operating supply voltage		8.0	_	18	V
I _{q(tot)}	total quiescent current	V _P = 14.4 V, SE mode	_	140	170	mA
I _{stb}	standby supply current	V _P = 14.4 V	_	1	100	μΑ
G _v	voltage gain	SE mode	25	26	27	dB
		BTL mode	31	32	33	dB
Bridge-tied I	oad application					
Po	output power	$V_P = 14.4 \text{ V}; R_L = 4 \Omega$				
		THD = 0.5%	14	15	_	W
		THD = 10%	17	21	_	W
THD	total harmonic distortion	$f_i = 1 \text{ kHz}; P_o = 1 \text{ W};$ $V_P = 14.4 \text{ V}; R_L = 4 \Omega$	_	0.05	0.15	%
V _{OO}	DC output offset voltage	$V_P = 14.4 \text{ V}; R_L = 4 \Omega;$ mute condition	_	10	20	mV
		$V_P = 14.4 \text{ V}$; on condition	_	0	100	mV
V _{n(o)}	noise output voltage	$R_s = 1 \text{ k}\Omega; V_P = 14.4 \text{ V}$	_	100	200	μV
Single-ende	d application			•		•
Po	output power	$V_P = 14.4 \text{ V}; R_L = 4 \Omega$				
		THD = 0.5%	4	4.5	_	W
		THD = 10%	5	6	_	W
THD	total harmonic distortion	$f_i = 1 \text{ kHz}; P_o = 1 \text{ W};$ $V_P = 14.4 \text{ V}; R_L = 4 \Omega$	-	0.08	0.15	%
V _{OO}	DC output offset voltage	$V_P = 14.4 \text{ V}; R_L = 4 \Omega;$ mute condition	-	10	20	mV
		$V_P = 14.4 \text{ V}$; on condition	_	0	100	mV
V _{n(o)}	noise output voltage	$R_s = 1 \text{ k}\Omega; V_P = 14.4 \text{ V}$	_	80	150	μV

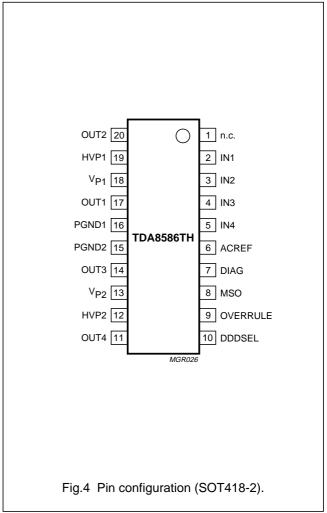
TDA8586

BLOCK DIAGRAM

TDA8586

Power amplifier with load detection and auto BTL/SE selection


TDA8586


PINNING

OVMDOL	F	PIN	DESCRIPTION
SYMBOL	TDA8586Q	TDA8586TH	DESCRIPTION
n.c.	_	1	not connected
IN1	5	2	non-inverting input 1
IN2	6	3	inverting input 2
IN3	7	4	non inverting input 3
IN4	8	5	inverting input 4
ACREF	11	6	common signal input
DIAG	12	7	diagnostic output/mode fix
MSO	13	8	mode select mute, standby or on
OVERRULE	_	9	mode selection overrule
DDDSEL	_	10	2 or 10% dynamic distortion detection
OUT4	14	11	SE output 4 (negative)
HVP2	15	12	buffer output/BTL output 2 (negative)
V _{P2}	16	13	supply voltage 2
OUT3	17	14	SE output 3/BTL output 2 (positive)
PGND2	10	15	power ground 2
PGND1	9	16	power ground 1
OUT1	1	17	SE output 1/BTL output 1 (positive)
V _{P1}	2	18	supply voltage 1
HVP1	3	19	buffer output/BTL output 1 (negative)
OUT2	4	20	SE output 2 (negative)

Power amplifier with load detection and auto BTL/SE selection

TDA8586

Power amplifier with load detection and auto BTL/SE selection

TDA8586

FUNCTIONAL DESCRIPTION

The TDA8586 is a multi-purpose power amplifier with four amplifiers and 2 buffer stages, which can be connected in the following configurations with high output power and low distortion:

- Dual Bridge-Tied Load (BTL) amplifiers
- · Quad Single-Ended (SE) amplifiers.

In the BTL mode of operation, the 2 buffer amplifiers act as inverting amplifiers to complete the bridge across the front amplifiers (OUT1 and OUT3) and the rear outputs (OUT2 and OUT4) enter a high-impedance state.

In the SE mode of operation, the buffers act as an AC ground path thereby eliminating the need for series capacitors on the speaker outputs.

Diagnostics:

- While the IC is in the mute mode, the diagnostic output will signal the mode of operation when the IC is not overruled
- In the on mode the diagnostic output will signal any fault in the IC or if the output of any amplifier is clipping with a distortion of 10% (or 2% depending on selected clip-mode).

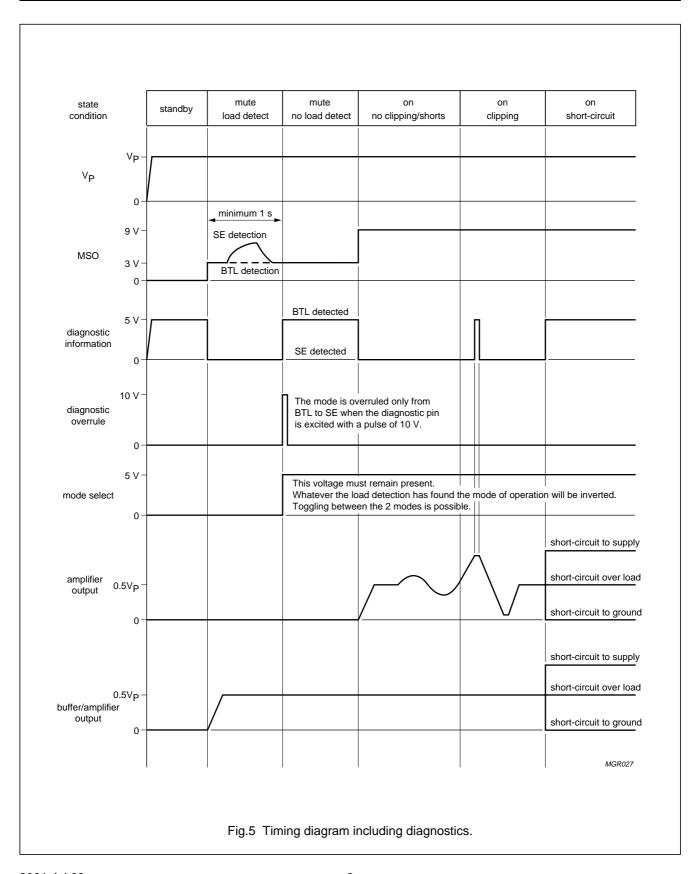
Special attention is given to the dynamic behaviour as follows:

- · Noise suppression during engine start
- · No plops when switching from standby to on
- Slow offset change between mute and on (controlled by MSO pin)
- Low noise levels, which are independent of the supply voltage.

Protections are included to avoid the IC being damaged at:

- Over temperature: T_i > 150 °C
- Short-circuit of the output pin(s) to ground or supply rail. When short-circuited, the power dissipation is limited
- ESD protection (Human Body Model 3000 V and Machine Model 300 V).

The presence of the load is measured after the transition between standby and mute. The IC will determine if there is an acceptable load on both outputs (OUT2 and OUT4). If both outputs are unloaded, the IC will switch to a 2 speaker mode of operation (BTL mode), unless it is overruled.


There are two options to overrule:

- Before transition from mute to on, after a load detection, pulling the diagnostic output above 9.5 V will force the IC into 4 speaker mode
- 2. TDA8586TH: pulling the OVERRULE pin according pinning table.

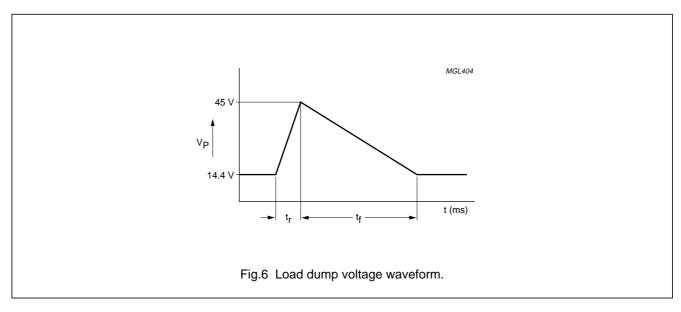
Care should be taken with the OVERRULE function as it works during the on mode. If there is a 2 or 4 speaker mode change during the on mode a large plop can be heard on the speakers.

The ACREF input (common signal input) acts with the four signal inputs (IN1 to IN4) to provide quasi differential inputs. A capacitor must be connected to this pin of which the ground pin should be connected to the ground at the signal source (usually the ground at the audio signal processor). This capacitor has a dual function. During the speaker detection, the signal ground capacitor is used to set the time constant of the measurement (and thus determines the minimum required switch-on time). The capacitor on the MSO pin allows the integrate function to provide immunity to outside noises during load detection.

TDA8586

Power amplifier with load detection and auto BTL/SE selection

TDA8586


LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage	operating	8	18	V
		load dump protected; see Fig.6	_	45	V
V_{DIAG}	voltage on diagnostic pin		_	18	V
I _{OSM}	non-repetitive peak output current		_	6	А
I _{ORM}	repetitive peak output current		_	4	А
V _{rp}	reverse polarity voltage	note 1	_	6	V
V _{sc}	AC and DC short-circuit voltage of output pins across loads and to ground or supply pins		_	18	V
P _{tot}	total power dissipation		_	75	W
Tj	junction temperature		_	150	°C
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-40	+150	°C

Note

1. A large reverse current will flow, therefore external protection is needed (fuse and reverse diode).

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	40	K/W
R _{th(j-c)}	thermal resistance from junction to case		2	K/W

Power amplifier with load detection and auto BTL/SE selection

TDA8586

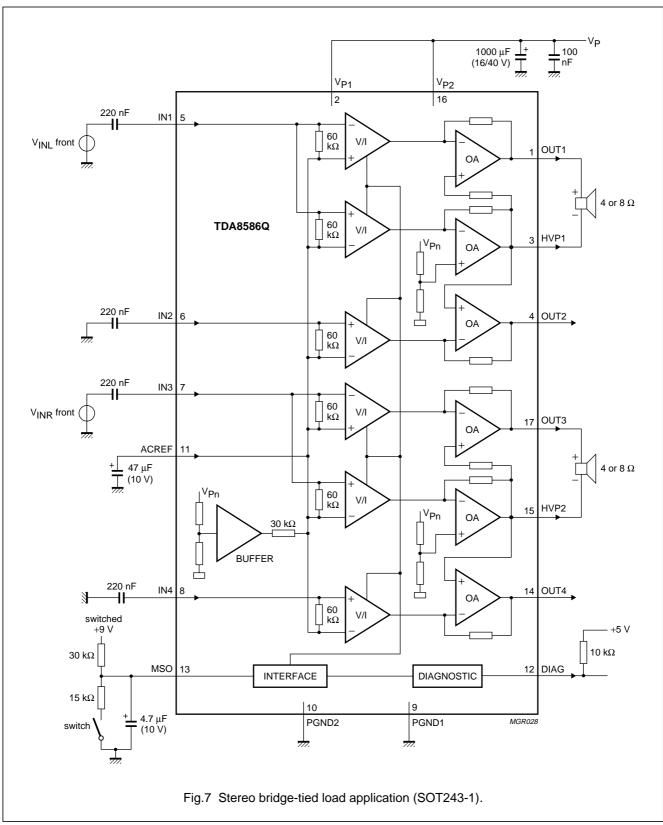
CHARACTERISTICS

 V_P = 14.4 V; T_{amb} = 25 °C; f_i = 1 kHz; R_L = ∞ ; measured in test circuit of Fig.8; unless otherwise specified.

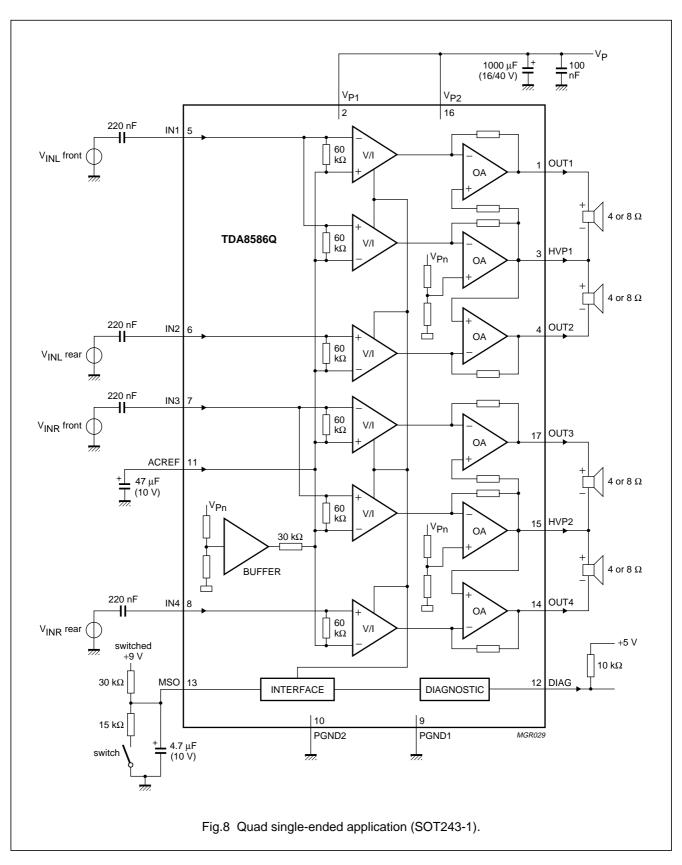
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies	-		1	'	1	
V _P	operating supply voltage		8.0	14.4	18	V
I _{q(tot)}	total quiescent current	SE mode	_	140	170	mA
I _{stb}	standby current		_	1	100	μΑ
Vo	DC output voltage	V _P = 14.4 V	_	7.0	_	V
V _{P(mute)}	low supply voltage mute		6.0	7.0	8.0	V
V _o	single-ended and bridge-tied	$V_P = 14.4 \text{ V}; R_L = 4 \Omega$				
	load output voltage	mute condition	_	-	20	mV
		on condition	_	_	100	mV
V _I	DC input voltage	V _P = 14.4 V	_	4.0	_	V
PIN MSO						
V _{MSO}	voltage at pin MSO	standby condition	0	_	0.8	V
		mute condition; note 1	2.0	3.0	4	V
		on condition	8.0	_	10.5	٧
I _{MSO}	input current	mute pin at standby condition; V _{MSO} < 0.8 V	_	5	40	μА
Diagnostic	; output buffer (open-collector)	; see Figs 7 to 8		•		•
V _{DIAG(L)}	diagnostic output voltage LOW	I _{sink} = 1 mA	_	0.3	0.8	V
I _{LI}	leakage current	V _{DIAG} = 14.4 V	_	_	1	μΑ
V _{DIAG(or)}	diagnostic override voltage	in mute mode after load detection	10.5	_	18	V
V _{DIAG(4ch)}	diagnostic 4 channel indication voltage	mute, after load detection with 4 speakers connected	-	0.3	0.8	V
CD2	clip detector LOW	THD mode; $V_{DIAG} > 3 V$; R = 10 k Ω	0.5	2	3.5	%
CD10	clip detector HIGH	THD mode (default); V _{DIAG} > 3 V; R = 10 kΩ	7	10	13	%
CLIP DETECT	CONTROL PIN		<u>'</u>	'	1	
V _{DDDSEL}	voltage at DDD select pin to	10% DDD	0	_	1	V
555011	obtain:	2% DDD	3	_	6	V
I _{DDDSEL}	Input current DDD select pin	V _{DDDSEL} = 5 V	15	-	140	μΑ
	application (see Fig.7)				•	•
THD	total harmonic distortion	$f_i = 1 \text{ kHz}; P_0 = 1 \text{ W}; R_L = 4 \Omega$	_	0.05	0.15	%
		45 Hz < f_i < 10 kHz; P_o = 1 W; R_L = 4 Ω ; filter: f < 30 kHz	_	0.3	-	%
P _o	output power	$V_P = 14.4 \text{ V}; R_L = 4 \Omega; \text{ note } 2$	1			
-		THD = 0.5%	14	15	_	W
		THD = 10%	17	21	_	W

Power amplifier with load detection and auto BTL/SE selection

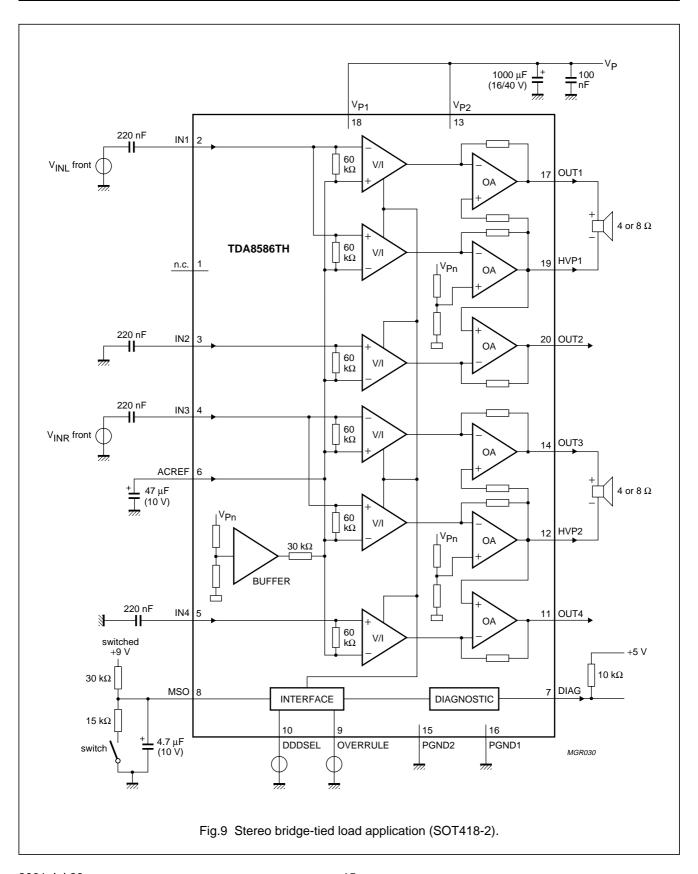
TDA8586

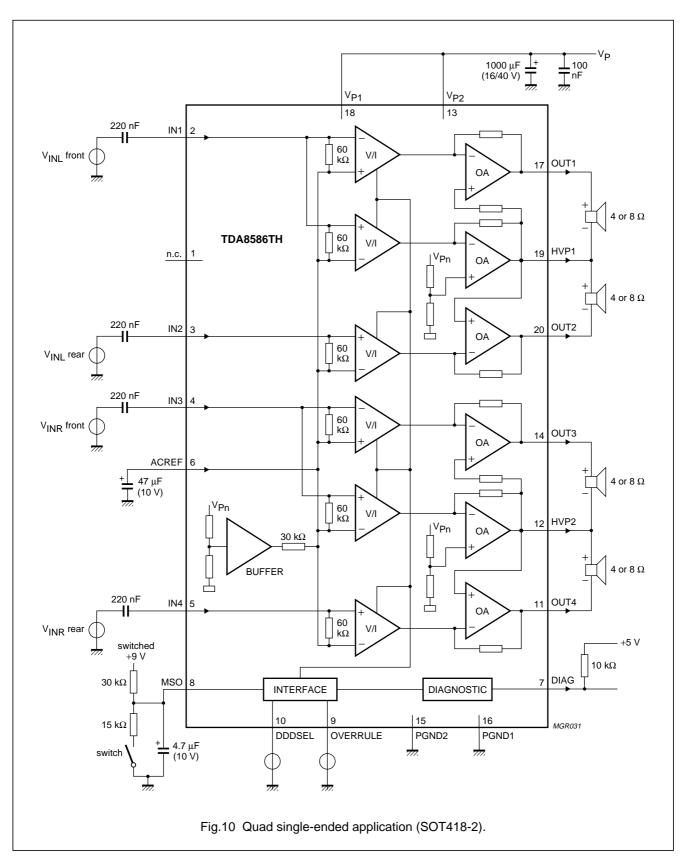

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
G _v	voltage gain	V _{i(rms)} = 15 mV	31	32	33	dB
ΔG_v	channel unbalance	V _{i(rms)} = 15 mV	-0.7	0	+0.7	dB
$\alpha_{\tt CS}$	channel separation	$P_0 = 2 \text{ W; } f_i = 1 \text{ kHz; } R_L = 4 \Omega$	45	55	_	dB
V _{OO}	DC output offset voltage	V _P = 14.4 V; on condition	_	0	100	mV
		V_P = 14.4 V; R_L = 4 Ω ; mute condition	_	10	20	mV
V _{n(o)}	noise output voltage on	$R_s = 1 \text{ k}\Omega; V_P = 14.4 \text{ V}; \text{ note } 3$	_	100	150	μV
V _{n(o)(mute)}	noise output voltage mute	note 3	_	0	20	μV
V _{o(mute)}	output voltage mute	V _{i(rms)} = 1 V	_	3	500	μV
SVRR	supply voltage ripple rejection:	$R_s = 0 \Omega$; $f_i = 1 \text{ kHz}$; $V_{ripple} = 2 V (p-p)$	45	55		.ID
		on condition	45	55	-	dB
		mute condition	55	70	-	dB
Z _i	input impedance	input referenced to ground	40	60	90	kΩ
Quad SE ap	oplication (see Fig.8)					
THD	total harmonic distortion	$f_i = 1 \text{ kHz}; P_o = 1 \text{ W}; R_L = 4 \Omega$	_	0.05	0.15	%
		45 Hz < f_i < 10 kHz; P_o = 1 W; R_L = 4 Ω ; filter: f < 30 kHz	_	0.5	_	%
P _o	output power	$V_P = 14.4 \text{ V}; R_L = 4 \Omega; \text{ note 2}$				
		THD = 0.5%	4	4.5	_	W
		THD = 10%	5	6	_	W
G _v	voltage gain	V _{i(rms)} = 15 mV	25	26	27	dB
ΔG_{v}	channel unbalance	$V_{i(rms)} = 15 \text{ mV}$	-0.7	0	+0.7	dB
α_{cs}	channel separation	$P_0 = 2 \text{ W; } f_i = 1 \text{ kHz; } R_L = 4 \Omega$	40	50	_	dB
V _{OO}	DC output offset voltage	V _P = 14.4 V; on condition	_	0	100	mV
		V_P = 14.4 V; R_L = 4 Ω ; mute condition	_	10	20	mV
V _{n(o)}	noise output voltage on	$R_s = 1 \text{ k}\Omega; V_P = 14.4 \text{ V}; \text{ note } 3$	_	80	150	μV
V _{n(o)(mute)}	noise output voltage mute	note 3	_	0	20	μV
V _{o(mute)}	output voltage mute	V _{i(rms)} = 1 V	_	3	500	μV
SVRR	supply voltage ripple rejection	$\begin{aligned} R_S &= 0 \ \Omega; \ f_i = 1 \ kHz; \\ V_{ripple} &= 2 \ V \ (p-p) \end{aligned}$				
		on condition	43	47	_	dB
		mute condition	55	70		dB

Notes


- 1. Tolerances on the mute level is tight because of the usage of this pin for integration during load detection.
- 2. The output power is measured directly on the pins of the IC.
- 3. The noise output is measured in a bandwidth of 20 Hz to 20 kHz.

TDA8586


APPLICATION INFORMATION

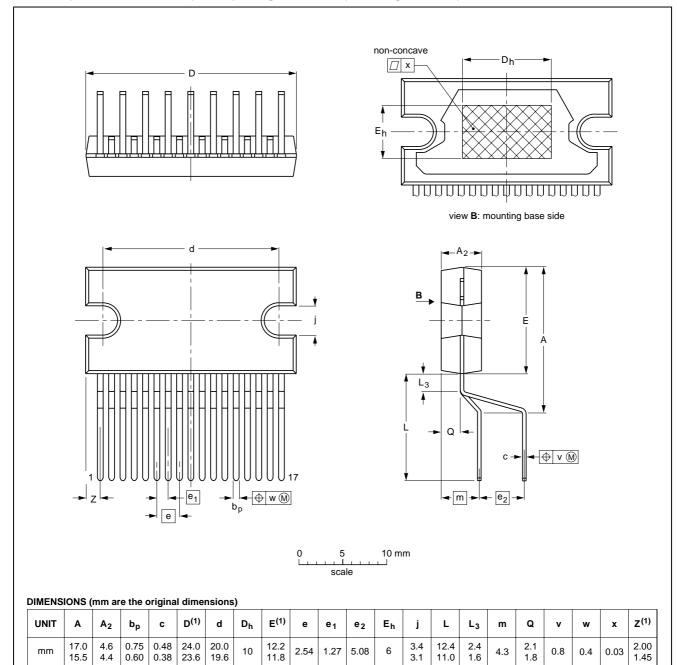

TDA8586

TDA8586

TDA8586

TDA8586

INTERNAL PIN CONFIGURATION


PIN TDA8586TH	NAME	EQUIVALENT CIRCUIT
2, 3, 4, 5 and 6	inputs	IN MGE014
11, 12, 14, 17, 19 and 20	outputs	V _P OUT OUT 0.5 V _P MGE015
8	mode select	VP MGE016

TDA8586

PACKAGE OUTLINES

DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm)

SOT243-1

Note

4.4

0.60

0.38

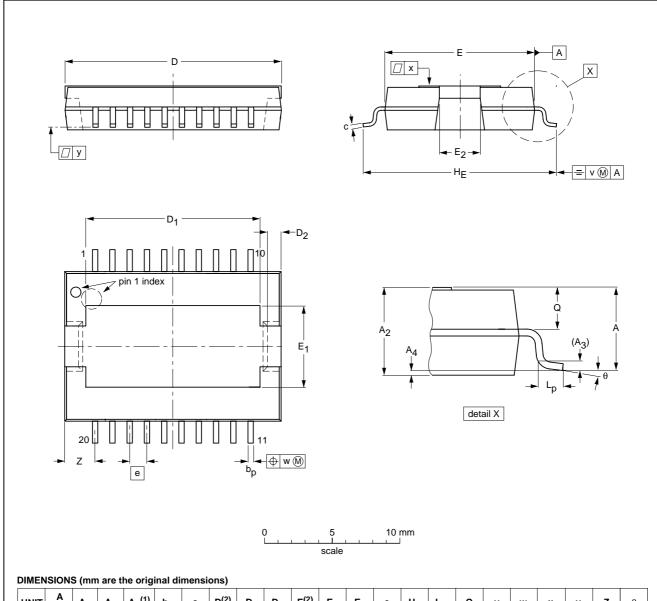
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

23.6

19.6

	OUTLINE		REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
	SOT243-1						97-12-16 99-12-17

11.0


1.6

2001 Jul 23 18

TDA8586

HSOP20: plastic, heatsink small outline package; 20 leads; low stand-off height

SOT418-2

ι	JNIT	A max.	A ₂	A ₃	A ₄ ⁽¹⁾	bp	С	D ⁽²⁾	D ₁	D ₂	E ⁽²⁾	E ₁	E ₂	е	HE	Lp	Q	v	w	х	у	z	θ
	mm	3.5	3.5 3.2	0.35	+0.12 -0.02	0.53 0.40	0.32 0.23	16.0 15.8	13.0 12.6	1.1 0.9	11.1 10.9	6.2 5.8	2.9 2.5	1.27	14.5 13.9	1.1 0.8	1.7 1.5	0.25	0.25	0.03	0.07	2.5 2.0	8° 0°

Notes

- 1. Limits per individual lead.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

	OUTLINE		REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
	SOT418-2						98-02-25 99-11-12

Power amplifier with load detection and auto BTL/SE selection

TDA8586

SOLDERING

Introduction

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Through-hole mount packages

SOLDERING BY DIPPING OR BY SOLDER WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joints for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg(max)}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

MANUAL SOLDERING

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

Surface mount packages

REFLOW SOLDERING

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

WAVE SOLDERING

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

MANUAL SOLDERING

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Power amplifier with load detection and auto BTL/SE selection

TDA8586

Suitability of IC packages for wave, reflow and dipping soldering methods

MOUNTING	PACKAGE	SOLDERING METHOD					
MOONTING	PACKAGE	WAVE	REFLOW ⁽¹⁾	DIPPING			
Through-hole mount	DBS, DIP, HDIP, SDIP, SIL	suitable ⁽²⁾	_	suitable			
Surface mount	BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable	_			
	HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ⁽³⁾	suitable	_			
	PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable	_			
	LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable	_			
	SSOP, TSSOP, VSO	not recommended ⁽⁶⁾	suitable	_			

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
- 3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

Power amplifier with load detection and auto BTL/SE selection

TDA8586

DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

TDA8586

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 **Austria:** Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4728 6600, Fax. +33 1 4728 6638

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,

Tel: +36 1 382 1700, Fax: +36 1 382 1800

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838, Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 **Norway:** Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398 **South America:** Al. Vicente Pinzon, 173, 6th floor,

04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 **Switzerland:** Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,

Tel. +66 2 361 7910, Fax. +66 2 398 3447

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America **Vietnam:** see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 3341 299, Fax.+381 11 3342 553

For all other countries apply to: Philips Semiconductors,

Marketing Communications, Building BE-p. P.O. Box 218, 5600 MD FINDHOVEN

Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 2001 SCA72

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands 753503/03/pp24 Date of release: 2001 Jul 23 Document order number: 9397 750 08407

Let's make things better.

